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Abstract 

Under a voting strategy in a fault-tolerant software system there is a difference between 
correcmess and agreement. An independent N-version programrmng reliability model is proposed 
for treating small output spaces which distinguishes between correcrness and agreement. System 
reliability is investigated using analytical relationships and simulation. A consensus majority voting 
strategy is proposed and its performance is analysed and compared with other voting strategies. 
Consensus majority strategy automatically adapts the voting to different component reliability and 
output space cardinality characteristics. It is shown that absolute majority voting strategy provides a 
lower bound on the reliability provided by the consensus majority, and 2-of-n voting strategy an 
upper bound. If r is the cardinality of the output space it is proved that 1h is a lower bound on the 
average reliability of fault-tolerant system components below which the system reliability begins to 
deteriorate as more versions are added 
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I. Introduction 

Recent experiments with multiversion software have demonstrated the fact that identical and 
incorrect answers can occur with perhaps higher frequency than is expected [Sco84, Kni86, 
Vou85,86] particularly when small output spaces are involved. For example, if the output space is 
binary, (0,l) , then all incorrect responses must agree. Such phenomena make the fault-tolerant 
techniques of N-version programming [Avi77, Avi841 and Consensus Recovery Block 
[Sco83a,b,84,87] more likely to fail during the voting process since the voter may not be able to 
distinguish between c o m t  and incorrect responses. In the past models of fault-tolerant reliability 
have equated output agreement with correctness (e.g. [Sco83a,b, Sc0871) which is inadequate for 
complete modeling of such an environment. In this paper we distinguish between agreement and 
mrrecmess and develop a reliability model of a voting environment which can be used to determine 
the number of versions r e q u d  as a function of the cardinality of the output space. 

II. Voting Strategies in N-Version Programming 

In an m-of-n fault-tolerant software (FTS) system the number of functionally equivalent 
independently developed versions is n, and m is the agreement number or the number of 
matching outputs which the voting or adjudication algorithm requires for system success. In the 
past, because of cost restrictions, n was rarely larger than 3 and m was traditionally chosen as 

Ceiling[(n+l)/2] which we will call absolute majority voting. In [Sco87] Scott, Gault and 
McAllister show that if the output space is large and with true statistical independence of FTS 
versions, there is no need to choose m > 2 regardless of the size of n although considerable 
reliability gains occur with larger n. We wdl use the term 2-of-n voting for this case. 

With small output spaces we suggest that a third voting technique be considered, which we will call 
consensus majority voting . To motivate this technique consider the following scenario. 
Suppose we have n = 11 versions and output space cardinality of 3. Let a vector (ijJc) represent 
the frequencies of the three possible output states (i + j + k = n) and let the fmt component, i, 
represent the frequency of the correct output. In this case, absolute majority is 6, but vectors 
(5,3,3), (5,4,2), or (5,2,4) may represent likely events which will be declared a system failure 
under absolute majority voting. Furthermore, the vectors (4,4,3) and (4,3,4) are the only cases in 
which a correct answer occurs when exactly four versions agree. But if three is chosen as the 
agreement number, there always exists another output on which more than three versions agree. In 
such cases an obvious strategy is to choose the output with the largest frequency, if such exists. 
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When there is more than one choice, as in this example when the output state frequency vector is 
(5,5,1) or (5*1*5), and if choosing a wrong answer or having no answer has the same impact on 
the system, then choosing one result with five identical outputs at random is a better strategy (on 
the average) than declaring system failure. In this example then there is a 50 percent chance that the 
correct output will be selected when this formal strategy is used. 

In consensus majority voting the voter uses the following algorithm to select the "correct" answer 
- If there is an absolute majority agreement (2 Ceiling[(n+l)/2]) then this answer is chosen as the 

correc t " answer. 
- If there is a unique maximum agreement, but this number of agreeing versions is less than 

Ceiling[(n+l)/2], then this answer is chosen as the "correct" one. 
- If there is a tie in the maximum agreement number then one set is chosen at random and the 

answer associated with this set is chosen as the ''correct'' one. 

We discuss this strategy further in the following sections and compare it with 2-of-n and absolute 
majority voting. We will first develop the mathematics for treating the difference between 
agreement and correcmess. 

111. The Correctness Factor 

We first define a correctness factor ci which is the probability that an output is correct given that 

versions agree. If PrJi) is the probability that i versions are correct and Pr,(i) is the probabilir 

that i versions agree we have 

Ci = Pr( output is correct I i versions agree) 
= Pr( i versions are correct) / Pr(i versions agree) 
= / Pr,(i) 

Now 

Pr( i versions agree) = Pr( i versions agree and are correct) + 
Pr( i versions agree and are incorrect) (2) 

Also, using "correct" and "incorrect" to mean "output is correct" and "output is incorrect" 
respectively 
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Pr(incornct I i versions agree) + Pr(comt  1 i versions agree} = 1 

Hence, 

Pr( incorrect I i versions agree) = 1 - ci 

Using the data domain approach of Scott et. al. [Sco83&b], the reliability of an m-of-n system 
which we denote by bin becomes 

n n 

i=m i== 

We expect that the sequence 

C = (ci 1 i = 2, ... ,n) 

is nondecreasing, i.e. that the chance of an output being incorrect does not increase as the number 
of versions which agree increases. In particular, it is clear that 

and hence if, for all i, ci < 1 then Rmin < 1. 

For tractability we will assume that all software versions have the same reliability or probability of 
obtaining the correct answer for a given input. Let this reliability be p. Then we have 

where *Ci denotes the number of combinations of n items taken i at a time. It follows that 

(4) 
i n-i 

Pra (i) = Prc (i) + nCi (1-p) p 

In the following section we consider the impact of small output spaces on a voting strategy. 

Table 3.1 gives correcmess factors as a function of version reliabilities when the output space is 



binary. The cOrrccmess factors converge to 1 only for p>l/r where r is the size of the output space. 
(Indeed the sequence is decreasing for p < l/r) .This is not an accident as we will show in the 
following section. 

IV. Small Output Spaces 

Let the output space have cardinality r and assume as above that all versions have the same 
reliability p. We further assume, for tractability, that the probability of failure of a version is 
independent of the failure of any other. Assume a labeling of the outputs 1.2 ..., r such that output 

1 is the correct one and occurs n1 times. Let qi ,i22 denote the probability that the incomt  output 

i will occur q times where 

n1+ n2 + ... + nk = n 

and 

Then the probability that the correct output 1 will occur n1 times is 

( 5 )  
n! 

nl  ! n2!. ..nr! p"1 q? ... ,.r P, ( n l > =  C 
n 

where i >1. The reliability of an m-of-n system becomes 

n! 
n1 ! n2! .. .nr! 

ai = n-n, 
L c2 J 

Equation (6) does not allow for multiple incorrect outputs, however. Let M (i;n-) denote that i 

replaces n. in equation (5) .  That is, 
J 

1 
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"r 
n! 

nl! ... nk1! i! ...I+ I $1 @ ... qF11 q; ... q, M ( i ; n j ) =  

C n , = n - i  

It follows that the cmecmess factor ci then becomes 

(7) 

n! I p"1 q"-"l M ( i ; n j ) =  C nl! ... nFl! i! ...I+ - (9) 

j =  I 

where i lies between Ceiling[(n+l)/2] and n. The terns M(i;nj) are the probabilities of exactly i 

identical incorrect outputs where 21jSr. We note that the expression becomes considerably more 

complicated when i lies between Floor [(n+r-l)h] and Ceiling [(n+1)/2] since the M ( i ; n. J )'s may 

have terms in common, i.e., it is possible to have more than one output occurring more than i 
times. For example, in a case in which r=3 and n=l 1 it is possible that the correct output and one 
incorrect output can each occur 5 times for the same input. In this case the denominator of equation 
(8) overestimates the correct result We assume henceforth that i 2 Ceiling [(n+1)/2]. 

For tractability we also assume the occurrence of each incorrect output has the same probability q, 
and (r- 1)q = 1 -p. (This assumption is also 'best case' in the sense that different probabilities tend to 
effectively reduce the output space requiring higher version reliability. We will discuss this further 
in the last section.) Equation (7) then becomes 

h n k = n - i  

Then we have 
M(i;n2) = M(i;n3) = ... = M(i;nk) 

and equation (8) becomes 

M ( i ; n l )  
ci = M ( i  ; n1 ) + (r-1)M ( i ; "2) (10) 
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From [Tri82], the marginal probability function of M(i;nj) is given by 

M ( i ; nj )  = ,.,Ci q'(1-q)"' 

When i = n1 the equation becomes 

M ( i ; n1 = n ~ i  pi 

Substituting (1 1) and (12) into (10) gives 

[,c, Pi (1-Pri 1 
w. - 

(1 1) 

(12) 

(13) 

From our comments above and equation (3). it follows that we cannot have Rmln converging to 1 

unless the sequence (ci) converges to 1. In the following theorem we show that a necessary and 

sufficient condition that lim(ci) = 1 is that p > Vr. 

Theorem 4.1 ; 

The sequence {ci} is increasing and lirn {Ci} = 1 (as n->-) if and only if p > l/r 

(r22). 

Proof: 

The sequence (Ci ) shown in equation (13) can be simplified to 

1 
ci = 

I+ (r-1) (q/p)' 1 ~ - q ) /  (1-p)1*~ 

In equation (14), let 

(14) 
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then equation (14) becomes 

ci = l/[l+(r-l)Qi] . 

Substitution of q=(l-p)/(r-1) into equation (15) gives 

We note that (ci) is an increasing sequence and its limit is one if and only if (Qi) is a decreasing 

sequence converging to zero. For the sequence (Qi) to be monotone we must have (Qi+l/Qi) c 1. 

Since, 

or 
p(r-2) + p2 > 1 - 2p + p2 

(r-2)p> 1-2p 

r P > l  

or 

or 

Hence, we must have 
p >  l/r.  

This proves the necessity. 

Since the boundary reliability p is larger than l/r, let A denote a positive number such that 

p =  l/r+A 

Substituting (l/r + A) into equation (16), we have 



Then 
2 

Qi+l (l-:-A) 
-= 

Qi ( r - 2 + L + * ) ( i + A )  r 

Because r is an integer and larger than or equal to two, 

2 (f + A )  (r - 2 + 1 + A )  - (1 - 7 1 - A )  = r + rA - 1 > 1 
r 

Therefore, (Qi) is a decreasing sequence, and hence (ci) is an increasing sequence. When i = n, 

Qn becomes 

Because the fraction is less than one, Qn approaches zero as n approaches infinity. Therefore, the 

lirmt of (ci) is one when p is larger than l/r. This proves sufficiency and completes the proof 

of Theorem 4.1. 

The following theorem gives sufficient conditions that 

Let the output space have cardinality r and assume all components are independent 
and have the same reliability p. Further assume unique correct outputs. Then the 
following are sufficient conditions for 
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(1) p > lh. 
(2) The agreement number m is equal to Floor[(n+r-l)/rl. If Floor[(n+r-l)/r] is 

zero, m is set to two. (We note that if n becomes arbitrarily large then m 
must also). 

(3) When a version fails, the probability of Occurrence of any incorrect output is 
q, where q=(l-p)/(r-1). 

Proof: 

The probability that the j* incorrect item within the output space is generated by i versions is 
M(i ; nj) . From equation (1 l), the marginal probability of M(i ; nj) is 

M ( i ; n j ) - n  - c. q! (1 - qj)*l 

where q. is the probability that the jth incorrect output is generated. When j is not smaller than the 

majority this incorrect output will be voted as correct in N-version programming. But it may or may 
not be voted as the correct answer when j is a number between m and Ceiling[(n+l)/2]. Depending 
on the voting strategy the probability that the jth incorrect item may be chosen as the correct answer 
under m-of-n voting algorithm is no larger than 

1 

i =  m 

In [A&%], the above binomial formula is approximated using the following expression 

where 
1 

m-nqj- - 2 
(19) 

1 
m-nqj+ - 2 

(20) 
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and the m r  term o satisfies the inquality 

.13+.1811-2pI 3P tal c + e - 2  
P2 

Let p = (l/r + A), where A is a positive number. 

Because qj = q = (l-p)/(r-I), 

we have qj = q = (l/r)-& where a = A&-1). 

Substituting qj = (l/r)-a into equation (19) it becomes 

1 1 m - n( - a) - 

k1 = 4-j 
Since m 2 n/r, (rn=Floor[(n+r-l)/r]), we have 

1 
a n -  

a, 1 

where 

P =  J- 
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Obviously, when n approaches infinity, k' becomes arbitrarily large. Since k' is no larger than kl 
and k2 k2 1, 

and 

When n approaches infinity, p becomes arbitrarily large. The error term o in equation (18) 
approaches zero, and the limit can be written as 

The integral in the above equation is the accumulation function of the standard normal dismbution. 

Since kl and k2 approach infinity the limit is zero. 

In treating the limit of the second part, let 

k2 
(Hj)2 = (1 - k)e - (23) 

Applying L'Hopital's rule and differentiating both numerator and denominator with respect to k 
gives 

ke? 

1 
k2 k2 

e?- +k2e?- 

(Hj< = 

Obviously, the numerator of the above equation approaches zero when k becomes very large. 
Therefore, we have 
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The second part of equation (22) consists of two items 

Since the values of both approach zero as k l  and k2 become arbitrarily large, the difference 

between the two approaches zero. This establishes that as n becomes arbitrarily large the value 
computed by equation (1 8) approaches zero. 

Since the occurrence of each incorrect output has the same probability of appearing, the unreliability 

of this m-of-n software system (Fmln) = 1 - Rmln satisfies 

n 

Fmln < (r - 1) nCi qi (1 - q)n-i 
i =  m 

(24) 

Therefore, when n approaches infinity the right side of the inequality is zero. Because Fmin should 

be non-negative, it also approaches zero. The reliability of the system approaches one. This 
completes the proof of Theorem 4.2. 

V. Examples 

In this section we present numerical examples which illustrate the effect on the system reliability of 
different version reliabilities, different output space cardinality, and different voting strategies. 

In Table 5.1 and Figure 5.1 we show results obtained using equation (6) with m=Ceiling[(n+l)/2] 
and 1=2. This is the classical majority voting approach with a binary output space. The boundary 
version reliability in th is  case is l/r = 0.5. The three rows in the middle of Table 5.1 show that the 
version reliability must be larger than the boundary version reliability in order to improve the 
performance of the system. Figure 5.1 shows that with a fmed version reliability larger than 0.5 



13 

system =liability increases when more versions arc added. This, of course, is in agreement with 
findings of Eckhdt  and Lee mk85] who also studied the absolute majority voting process. 

Again using equation (6) if we assume an output space cardinality of r=3 then Table 5.2 and Figure 
5.2 show the effect on system reliability of varying the version reliabilities and the number of 
versions m for the consensus majority voting strategy. The minimal agreement number is 
Floor[(n+r-l)/r] = Floor[(n+2)/3]. The average boundary reliability of the versions is l/r = 1/3. 

Below this reliability value the sequence of correctness factors (Ci} decreases and the system 

reliability deteriorates as more versions are added. All versions are assumed to have the same 
reliability, and all failure states (j=2,3) the same probability (1-p)/(l-r)=(l-p)D of being excited. 

Table 5.3 and Figure 5.3 summarize the effect of the 2-of-n voting strategy for different numbers 
of components. The reliability was computed using equations (3) and (4). The agreement number 
is m=2, and it is assumed that the output space cardinality is infinite. As the number of components 
in the system increases, the reliabilities rapidly decrease, but here this effect is related to the 
number of components involved in the voting rather than the output space cardinality. Of course, 

unless c2 =c3= ...=cn= l this voting strategy can lead to disaster. 

The relationship between r and voting strategies is illustrated in Figure 5.4 for n=15. It is important 
to note that both the absolute majority and the 2-of-n are effectively output space insensitive and can 
lead to ambiguous or nonunique results. For odd n the former behaves as if r=2 since for absolute 
majority voting the agreement number is Ceiling[(n+l)/2] which is equivalent to lemng r=2 in the 
agreement number equation for consensus majority voting, Floor[(n+r- 1)/2]. For even n 
Ceiling[(n+1)/2]>Floor((n+2-1)/2]. Therefore from equations (3) and (4) it follows that given -2 
for even n the reliability of the system using absolute majority voting will be lower than when 
consensus majority is used, while for odd n it will be equal to it. The 2-of-n voting behaves as if 
Pinfinity since for infinite r the consensus majority agreement number reduces to 2 (see Theorem 
4.2). The consensus majority voting is r sensitive and therefore will perform better than absolute 
majority voting for r72 since Floor[(n+r-l)/r]~Ceiling[(n+l)/2]. The absolute majority represents a 
lower limit of the consensus majority voting with -2, while the 2-of-n is an upper limit 

Dependence of the system reliability on the output space cardinality is further illustrated in Figure 
5.5 for consensus majority with n=5 and n=15. Failure state probabilities are the same for all j=2..r 

incorrect outputs. We note that the asymptotic system reliability (r==) corresponds to 2-of-n 
voting approach, while the r=2 point corresponds to the absolute majority voting. Equations (3) to 
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(6) with consensus voting and simulation were used to compute the data points shown in Figures 
5.4 and 5.5. 

VI. Simulation 

The relationships given in section IV were derived by assuming that the probabilities of all failure 
states are equally likely. In practice this may not be true. In fact, it is quite possible that one of the 
failure states j, 21j9  is preferentially excited because of very high visibility (under given input 
conditions) of the fault(s)/emrs mapping into it. In the extreme, even in a large output space, this 
leads to the behaviour of the fault-tolerant system as if the output space cardinality is small, i.e. 
highly visible errors force a partitioning on the output space into equivalence classes which 
effectively reduces the output space cardinality. 

Another approximation that was made is the assumption that all the components have the same 
reliability. In practice a range of reliabilities around a mean value, p, would be expected. To study 
the influence of the scatter of individual component reliabilities and of the scatter in the probabilities 
of incorrect outputs, and to check on analytical solutions we used simulation. 

The model we have used is illustrated in Figure 6.1. A single component i is assumed to exhibit a 
probability qi = (1-pi) of failing. We do not separately model different errors contributing to this 

average failure rate, and we assume that all the components exhibit mutual independence with 
respect to the Probability of failure. For each simulated input the component state (failed, 

not-failed) is chosen randomly with the probability, qi, assigned to that component. If the final 

component state is a failure state the actual output state j, one of the (r-1) incorrect outputs, is 
selected randomly with the conditional probability Puli-failed) associated with that output. The 
process is repeated for all n components. The final states of the components are then voted using 
the absolute majority, consensus majority and 2-of-n strategies. 

Simulation of systems described by the equations given in section IV yielded results that coincided 
with the computations obtained using analytic solutions to within the confidence interval of the 
simulation runs. 

The influence of the scatter in component reliabilities is illustrated in Figures 6.2 and 6.3. The 
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For example, given that n=5, r4 ,  and pd.623 with op=0.186 we can have ~ 1 4 . 7 5 9 ,  ~ 2 4 . 5 2 2 ,  

~ 3 4 . 3 5 7 ,  ~ 4 4 . 8  19, ~ 5 4 . 6 5 8 .  These component reliability values give system reliability of 

0.735 for absolute majority voting, and 0.851 for consensus majority voting. Clearly, component 
i 4  on its own is more reliabile than the 5-version system under absolute majority vote, and is 
marpally worse than the system under consensus majority voting. As another example consider a 

standard deviation of component reliability, the square mot of ~~~~=Z[@i-p)~/ (n- l ) ] ,  whert p = 

Cpi/n , for i=l..n, is used to measure the dispersion of the component reliability values. In Figure 

6.2 we plot system reliability against the standard deviation of the component reliability using n=5 
with r=4 and ~ 4 . 9 5 .  It was assumed that each incorrect output state j has an equal probability 
(1-p)/(r- 1) of being selected. In Figure 6.3 we have n=5, r=4 and pd.623. Each pair of points 
(majority-absolute) shown in Figures 6.2 and 6.3 was obtained from a separate 100,OOO case 
simulation run. 

From the figures we see that the larger the stan- deviation of the component reliabilities the mOre 
reliable the system. This confirms that from the point of view of component reliabilities the 
equations discussed in secaon IV provide a conservative estimate of the system behaviour since 
they use the same component reliability value for all components and imply a standard deviation of 
zero. Of course, if scatter is large enough then it may happen that one of the components is in fact 
more reliable than the system as a whole under some or all of the discussed voting strategies. 

system composed of more reliable components. Let n=5,r-4, and p=0.95000 with o -0.05333 

which we can produce with ~14.96456,  ~ 2 4 . 9  1313, p3=0.87732, p4=0.99999, p5=0.99500. 

The resulting system reliability under absolute majority voting is 0.99953, and under consensus 
majority voting is 0.99979. Component i=4 is more reliable than the system under either of the 
strategies. Values in first example were computed using 2,000,000 case simulations giving a 95% 
confidence range about obtained system reliabilities of about & O.ooOo3. In the second example we 
used a 10,000,0o0 case simulation giving 95% confidence limits of about t 0.000013 about the 
reported values. 

P- 

Therefore, if all the components are nearly equally reliable, i.e. scatter is small, then using 
equations given in section rV to predict system reliability will provide a conservative estimate of 
this reliability. But if the scatter of the reliabilities is large it means that at least one of the 
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components is much more reliable than the average over al l  the components, and it may happen that 
there is at least one component which is more reliable than the N-version system. In such a 
situation, one should either reduce the system by discarding the most unreliable component(s), or 
perhaps employ modifred voting strategies. To illustrate this consider the following. 

Returning to the second example above and discarding component ~34 .87732  and keeping the 

other four, results in system reliability of 0.99635 under absolute majority voting and 0.99937 

under consensus majority voting. By discarding p3 and p2 we obtain 0.99979 for both 

absolute and consensus majority voting. It is only when we reduce the system down to two 
components that the sytem reliability becomes larger than that of component 4. Simulations ran for 
lO,OOO,OOO cases giving 95% confidence limits on system reliability of about O.oooO1. Clearly, 
when working with high reliability components, it is very important to have a well balanced set of 
components of nearly equal reliability in order to achieve best results. A possible adaptive voting 
strategy would be given information about the individual component reliabilities and may, for 
example, attach more importance to answers from sets containing the most reliable component(s). 
This is a subject for future research. 

Figure 6.4 illustrates the effect of variation in the conditional probabilities of selecting incorrect 

output states. If qij=qiPcjli-failed) represents the probability of selecting j* incorrect output for ih 

component, where Puli-failed) is the conditional probability that jth state will be chosen, then 

qi=Zqij=qiZPljii-failed)=l-pi, j=2..r. Let Pi=CP(ili-failed)/(r-l)=l/(r- 1) be the average conditionai 

probability. Then the standard deviation shown in Figure 6.4 is the square root of oP2 = C 

[(P(ili-failed)-Pi)2/(r-2)], where the s u m  is over j = 2..r output states. Simulations were performed 

assuming that for individual component reliabilities P~=P~=. . .=P~=P.  We see that the larger the 

scatter of the conditional failure probabilities, assuming the same p for all components, the mom the 
system behaviour tends towards that associated with the lower r values, i.e. toward that exhibited 
when absolute majority voting is employed. The c w e  for the latter is, of course, level since 
absolute majority voting is r insensitive (effective output space becomes binary, r=2). Simulation 
for each pair of points ran for 100,OOO test cases. 

As an example, let n=5, p=0.95 (all components), and r=4 with equal conditional failure 
probabilities for all incorrect outputs (j=2,3,4; P(jli-failed)=l/3). Then absolute majority voting has 
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system reliability of 0.99884 and consensus majority voting has reliability 0.99994. On the other 
hand, if we let r=11 but P(2li-failed)=0.99910 while for j=3..11 PCjli-failed)4.O0010, then 
consensus majority reliability drops to 0.99884 which is qua l  to that obtained by absolute majority 
voting, and is equivalent to an effective reduction of the output space cardinality to ~ 2 .  Example 
values were obtained by simulation, and their standard deviation is O.oooO25. 

The above discussion leads to the conclusion that for conservative estimates we should use r=2 and 
an average p value. However, in practical applications use of consensus majority voting is 
recommended since it provides automatic adaptation of the voting strategy to the component 
reliability and output space characteristics. In the lower limit the reliability provided by consensus 
majority is never worse than the absolute majority voting, while in the upper limit it is equivalent to 
the 2-of-n voting strategy. 

VII. Conclusions 

We have analyzed fault-tolerant software systems using N-Version Progra.mm.ing and different 
voting algorithms assuming output spaces with small cardinality and version failure independence. 
We have proposed an alternative voting strategy which we call consensus majority voting to treat 
cases when there may be agreement among incorrect outputs, a case which can occur with small 
output spaces. Consensus majority voting provides automatic adaptation of the voting strategy to 
varying component reliability and output space characteristics. We show that if r is the cardinality 
of the output space then llr is a lower bound on the average reliability of fault-tolerant system 
versions below which system reliability begins to deteriorate as more versions are added. 
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Table 3.1 Correctness factors as a function of version reliability under the assumption of version 
failure independence for 15 functionally equivalent program versions of equal reliability, p. 
The output space cardinality is 1=2, the boundary reliability is l/r = 1/2 = 0.5. 

i m . 4 9  p0.50 w . 5 1  pO.80 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0.6083 
0589 1 
0.56% 
0.5498 
0.5300 
0.5 100 
0.4900 
0.4700 
0.4502 
0.4304 
0.4110 
0.3917 
0.3728 
03543 

0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 

0.3917 O.ooO0 
0.4110 O.ooO0 
0.4304 O.OOO1 
0.4502 0.0010 
0.4700 0.1154 
0.4900 0.2000 
0.5100 0.8000 
0.5300 0.8846 
0.5498 0.9990 
0.5696 0.9999 
0.5891 1.oooO 
0.6083 1.oooO 
0.6272 1.oooO 
0.6457 1.oooO 
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system 
rel iabil i ty 

Figure 5.1 System reliability vs. component reliability for absolute majority voting strategy. 
Number of components used for voting is 'W', the agreement number is m, r-2 , and boundary 
version reliability is lb0.5.  

1 .o 
0.9 1 
0.8 - -  
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Figure 5.2 System reliability vs. component reliability for the consensus majority voting 
strategy. The number of voting components is "n", the agreement number is m, r-3, and the 
boundary version reliability is l/r = 0.3333. 
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Table 5.1 The reliability of the N-version programming system using majority voting ( ~ 2 ) .  
Reliability of the system is p, the number of components participating in a vote is n. 

0.0500 0.00725 0.00039 0.00000 0.00000 
0.1000 0.02800 0.00273 0.00031 0.00000 
0.1500 0.06075 0.01210 0.00361 0.00000 
0.2000 0.104oO 0.03334 0.00424 O.ooOo3 
0.2500 0.15625 0.07056 0.01730 0.00070 
0.3000 0.21600 0.12604 0.05001 0.00642 
0.3500 0.25175 0.19985 0.11323 0.03363 
0.4000 0.35200 0.28979 0.21310 0.11431 
0.4500 0.42525 0.39171 0.34650 0.27514 

0.4900 O . M O 0  0.47813 0.46861 0.45257 
05000 0 5 W  05oooO OJoooO 0 5 W  
05100 05l.500 052187 053139 054743 

0.5500 0.57475 0.60829 0.65350 0.72486 
0.6o00 0.64800 0.71021 0.78690 0.88569 
0.6500 0.71825 0.80015 0.88677 0.96637 
0.7000 0.78400 0.873% 0.94999 0.99358 
0.7500 0.84375 0.92944 0.89270 0.99930 
0.8000 0.89600 0.96667 0.99579 0.99997 
0.8500 0.93925 0.98790 0.99639 1.00000 
0.9OoO 0.97200 0.99727 0.99969 1.00000 
0.9500 0.99275 0.99961 1.00000 1.00000 
0.9900 0.99990 1.00000 1.00000 1.00000 
0.9990 1.00000 1.00000 1.00000 1.00000 
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Table 5.2 The reliability of the N-version programming system using consensus majority voting 
(-3). Reliability is p, the number of components participating in a vote is n. 

p n=3 n=7 n=ll n=15 

0.0500 0.00247 0.00131 O.ooo49 0.00008 
0.1000 0.03590 0.01708 0.00646 0.00243 
0.1500 0.07843 0.05064 0.02888 0.01584 
O m  0.13472 0.10502 0.07584 0.05420 
02500 0.20239 0.17870 0.15164 0.12884 
0.3000 0.27884 0.26785 0.25339 0.24154 

03300 032779 0.32662 032511 029537 
03330 033266 0.33258 033251 033237 
03333 033333 0.33333 033333 033333 
03340 033468 0.33484 033499 033527 
03400 034448 0.34683 034994 035280 

0.3500 0.36727 0.37141 0.37519 0.38248 
0.4000 0.44704 0.47123 0.50430 0.53410 
0.4500 0.53321 0.57412 0.62970 0.67710 
0.5000 0.61719 0.67090 0.74145 0.79646 
0.5500 0.69650 0.75753 0.83292 0.88482 
0.6OOO 0.768% 0.83117 0.90141 0.94252 
0.6500 0.83276 0.89030 0.94790 0.97534 
0.7000 0.88653 0.93474 0.97604 0.99125 
0.7500 0.92944 0.96549 0.99804 0.99758 
0.8000 0.96128 0.98458 0.99730 0.99953 
0.8500 0.98253 0.99470 0.99947 0.99995 
0.90oO 0.99448 0.99887 0.99995 0.99999 
0.9500 0.999% 0.99992 1.00000 1.00000 
0.9900 0.99999 1.00000 1.00000 1.00000 
0.9990 1.00000 1.00000 1.00000 1.00000 



23 

Table 5.3 The reliability of the N-version programming system using 2-of-n voting strategy 
(I=-). System reliability is p, the number of components participating in a vote is n. 

p n=3 n=7 n=ll ntl5 

0.0500 0.00725 0.0019 O.oooO1 0.00000 
0.1000 0.02800 0.14969 0.30264 0.450% 
0.1500 0.06075 0.28342 0.50781 0.68141 
0.2000 0.10400 0.42328 0.67788 0.83287 
0.2500 0.15625 0.55505 0.80290 0.91982 
0.3000 0.21600 0.60758 0.88701 0.96473 
0.3500 0.28175 0.76620 0.93492 0.98582 
0.4000 0.35200 0.84137 0.96977 0.99783 
0.4500 0.42525 0.89758 0.98601 0.99831 
0.5000 0.5oooO 0.93750 0.99414 0.99951 
0.5500 0.57475 0.96429 0.99779 0.99989 
0.6OoO 0.64800 0.98116 0.99927 0.99997 
0.6500 0.71825 0.99099 0.99980 1.00000 
0.7000 0.78400 0.9%21 0.99995 1.00000 
0.7500 0.84375 0.99865 0.99999 1.00000 
0.8000 0.89600 0.99963 1.00000 1.00000 
0.8500 0.93925 0.99993 1.00000 1.00000 
0.9oOo 0.97200 0.99999 1.00000 1.00000 
0.9500 0.99275 1.00000 1.00000 1.00000 
0.9900 0.99970 l.o00oo 1.00000 1.00000 
0.9990 1.00000 l.m 1.00000 1.00000 
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Figure 5.3 System reliability vs. component reliability assuming infinite cardinality of the output 
space under 2-of-n voting strategy. 
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Figure 5.4 System reliability vs. component reliability for n=15 in the range r=2 to I=-, under 
appropriate voting strategies. Probability of each J=2..r failure state is (1-p)/(r- 1). Simulation was 
used to compute the I= 10 curve. 
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Figure 5.5a System reliability vs. Output space cardinality for n=5 using consensus majority 
voting. All components have the same reliability, p. Probability of each j=2..r failure state is 
(1-p)/(r-I). Majority of the data points were computed by simulation. 
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Figure 5.5b System reliability vs. output space cardinality for n=15 using consensus majority 
voting. All components have the same reliability, p. Pmbability of each j=2..r failure state is 
(1-p)/(r-1). Majority of the data points were computed by simulation. 
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Figure 6.1 Schematic representation of the simulation states for a single component (a), and the 
voting process (b). Individual component reliability is represented by pi, and the conditional 
probability of failing with state j = 2 .. r by Poli-failed). 
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‘Figure 6.2 System reliability vs. the standard deviation of the component reliability. Probability 
of each failure state is (1-p)/(r-1) = 0.05/3. 
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Figure 6.3 System reliability vs. the standard deviation of the component reliability. Probability 
of each failure state is (1-p)/(r- 1) = 0.377/3. 
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Figure 6.4 System reliability vs. the standard deviation of the conditional failure state 
probability. All components have identical reliability p = 0.623. 


